Reconnecting nature and agricultural production: mixed cropping systems as a way forward sustainable intensification
Resumo
In the last decades, population growth worldwide boosts agricultural demand for food production. This huge driver rendered global food production more and more specialized, so agricultural landscapes became uniform and monotonic. The loss of diversity is a strong evidence of how modern agricultural landscapes have been disconnecting from nature. Evidence of environmental side-effects from this pathway are abundant in literature. Now, society is pressing towards changing practices aiming for healthy diets and sustainable food production systems. This raises the question: how to reconnect nature and agriculture in the context of future food production? In this review we propose a reconnection process based on the principles of ecological intensification or sustainable intensification. The integrated crop-livestock systems (ICLS) are the most consolidated technological pathway for reconciling crop production with natural processes. These systems are diverse and can partially mimic natural ecosystems exploring the synergies of natural biological processes, while achieving high levels of food production. ICLS promote soil improvements and mitigate greenhouse gas (GHG) emissions, reducing the agricultural share of global warming and climate change. Besides, these systems are more efficient in the use of nutrients and can optimize the use of other inputs such as pesticides. We present evidence of soil health and biogeochemical cycle restoration in addition to system stability improvement, and assume those symptoms as evidence of mixing crops and livestock fostering reconnection with natural processes.
Referências
ALVES, B.J.R.; MADARI, B.E.; BODDEY, R.M. Integrated crop–livestock–forestry systems: prospects for a sustainable agricultural intensification. Nutrient Cycling in Agroecosystems, v.108, p.1-4, 2017. https://doi.org/10.1007/s10705-017-9851-0
ANGHINONI, I.; CARVALHO, P.C.F.; COSTA, S.E.V.A. Abordagem sistêmica do solo em sistemas integrados de produção agrícola e pecuária no subtrópico brasileiro. Tópicos em Ciência do Solo, v.8, p.325-380, 2013.
BAYER, C. A seven-year study on the effects of fall soil tillage on yield-scaled greenhouse gas emission from flood irrigated rice in a humid subtropical climate. Soil & Tillage Research, v.145, p.118-125, 2015. http://dx.doi.org/10.1016/j.still.2014.09.001
BAYER, C.; MARTIN-NETO, L.; MIELNICZUK, J.; PAVINATO, A.; DIECKOW, J. Carbon sequestration in two Brazilian Cerrado soils under no-till. Soil and Tillage Research, v.86, p.237-245, 2006. http://dx.doi.org/10.1016/j.still.2005.02.023
BEAUCHEMIN, K.A.; HENRY, J.H.; LITTLE, S.M.; MCALLISTER, T.A.; MCGINN, S.M. Life cycle assessment of greenhouse gas emissions from beef production inwestern Canada: A case study. Agricultural Systems, v.103, p.371-379, 2010. https://doi.org/10.1016/j.agsy.2010.03.008
BONAUDO, T.; BENDAHAN, A.B.; SABATIER, R.; RYSCHAWY, J.; BELLON, S.; LÇEGER, F.; MAGDA, D.; TICHIT, M. Agroecological principles for the redesign of integrated crop–livestock systems. European Journal of Agronomy, v.57, p.43–51, 2014. https://dx.doi.org/10.1016/j.eja.2013.09.010
BULLER, L.S.; BERGIER, I.; ORTEGA, E.; MORAES, A.; BAYMA-SILVA, G.; ZANETTI, M.R. Soil improvement and mitigation of greenhouse gas emissions for integrated crop–livestock systems: Case study assessment in the Pantanal savanna highland, Brazil. Agricultural Systems, v.137, p.206-219, 2015. https:// doi.org/10.1016/j.agsy.2014.11.004
CARLSON, K.M.; GERBER, J.S.; MUELLER, N.D.; HERRERO, M.; MACDONALD, G.K.; BRAUMAN, K.A.; HAVLIK, P.; O’CONNEL, C.S.; JOHONSON. J.A.; SAATCHI, S.; WEST, P.C. Greenhouse gas emissions intensity of global croplands. Nature Climate Change, v.7, p.63-69, 2017. https://doi.org/10.1038/NCLIMATE3158
CARVALHO, P.C.F.; ANGHINONI, I.; MORAES, A.; SOUZA, E.D.; SULC, R.M.; LANG, C.R.; FLORES, J.P.C.; LOPES, M.L.T.; SILAVA, J.L.S.; CONTE, O.; WESP, C.L.; LEVEN, R.; FONTANELI, R.S.; BAYER, C. Managing grazing animals to
achieve nutrient cycling and soil improvement in no-till integrated systems. Nutrient Cycling in Agroecosystems, v.88, p259-273, 2010. https://doi.org/10.1007/s10705-010-9360-x
CARVALHO, J.L.N.; RAUCCI, G.S.; CERRI, C.E.P.; BERNOUX, M.; FEIGL, B.J.; WRUCK, F.J.; CERRI, C.C. Impact of pasture, agriculture and crop-livestock systems on soil C stocks in Brazil. Soil and Tillage Research, v. 110, p. 175-186, 2010x. http://dx.doi.org/10.1016/j.still.2010.07.011
CARVALHO, P.C.F.; BARRO, R.S.; BARTH NETO, A.; DE ALBUQUERQUE NUNES, P.A.; MORAES, A.; ANGHINONI, I.; BREDEMEIER, C.; BAYER, C.; MARTINS, A.P.; KUNRATH, T.R.; SANTOS, D.T.; CARMONA, F.C.; BARROS, T.; DE SOUZA
FILHO, W.; ALMEIDA, G.M.; CAETANO, L.A.M.; CECAGNO, D.; ARNUTI, F.; DENARDIN, L.G.O.; BONETTI, J.A.; DE TONI, C.A.G.; BORIN, J.B.M. Integrating the pastoral component in agricultural systems. Revista Brasileira de Zootecnia, v.47, e20170001, 2018a. https://doi.org/10.1590/rbz4720170001
CARVALHO, P.C.F.; DE ALBUQUERQUE NUNES, P.A.; ANGHINONI, I. O processo de pastejo como gerador de propriedades emergentes em sistemas integrados de produção agropecuária. In: SOUZA, E.D. et al. (ed.) Sistemas Integrados de Produção Agropecuária no Brasil. 1ed. Tubarão: Copiart, 2018, p.39-44.
CONCEIÇÃO, M.C.G.D.; MATOS, E.S.; BIDONE, E.D.; RODRIGUES, R.A.R.; CORDEIRO, R.C. Changes in Soil Carbon Stocks under Integrated Crop-LivestockForest System in the Brazilian Amazon Region. Agricultural Sciences, v.8, p.904-913, 2017. https://doi.org/10.4236/as.2017.89066
DE ALBUQUERQUE NUNES, P.A.; LACA, E.A.; CARVALHO, P.C.F.; LI, M.; DESOUZA FILHO, W.; KUNRATH, T.; MARTINS, A.P.; GAUDIN, A. Livestock integration into soybean systems improves long-term system stability and profits without compromising crop yields. Scientific Reports, v.11, p.1-14, 2021. https://doi.org/10.1038/s41598-021-81270-z
DENARDIN L.G.O.; MARTINS A.P.; CARMONA F.C.; VELOSO, M.G.; CARMONA, G.I.; CARVALHO, P.C.F.; ANGHINONI, I. Integrated crop-livestock systems in paddy fields: New strategies for flooded rice nutrition. Agronomy Journal, v.112, p.2219-2229, 2020. https://doi.org/10.1002/agj2.20148
DENARDIN, L.G.O.; CARMONA, F.D.C.; VELOSO, M.G.; MARTINS, A.P.; DE FREITAS, T.F.S.; CARLOS, F.S.; MARCOLIN, E.; CAMARGO, F.A.O.; ANGHINONI, I. No-tillage increases irrigated rice yield through soil quality improvement along time. Soil and Tillage Research, v.186, p.64-69, 2019. https://doi.org/10.1016/j.still.2018.10.006
DE SOUZA FILHO, W.; DE ALBUQUERQUE NUNES, P.A.; BARRO, R.S.; KUNRATH, T.R.;ALMEIDA, G.M.; GENRO, T.C.M.; BAYER, C.;. Mitigation of enteric methane emissions through pasture management in integrated croplivestock systems: Trade-offs between animal performance and environmental impacts. Journal of Cleaner Production, v.213, p.968-975, 2019. https://doi.org/10.1016/j.jclepro.2018.12.245
DIECKOW, J.; PERGHER, M.; PIVA, J.T.; SIMON, P.; RAMALHO, B.; AMADORI, C.; RITTER, S. Gaseous emissions of N2O and CH4 from subtropical Brazilian soil under integrated crop-livestock and crop-livestock-forestry production systems. In: INTERNATIONAL ATOMIC ENERGY AGENCY. Optimizing Soil, Water and Nutrient Use Efficiency in Integrated Cropping–Livestock Production Systems. Vienna: IAEA, 2020.
DENISON, R.F.; MCGUIRE, A.M. What should agriculture copy from natural ecosystems? Global Food Security, v.4, p.30–36, 2015. https://doi.org/10.1016/j.gfs.2014.12.002
DORÉ, T.; MACOWSKI, D.; MALÉZIEUX, E.; MUNIER-JOLAIN, N.; TCHAMITCHIAN, M.; TITTONELL, P. Facing up to the paradigm of ecological intensification in agronomy: Revisiting methods, concepts and knowledge.
European Journal of Agronomy, v.34, p.197–210, 2011. https://doi.org/10.1016/j.eja.2011.02.006
FARIAS, G.D.; DUBEUX JR, J.C.B.; SAVIAN, J.V.; DUARTE, L.P.; MARTINS, A.P.; TIECHER, T.; ALVES, L.A.; CARVALHO, P.C.F.; BREMM, C. Integrated croplivestock system with system fertilization approach improves food production and resource-use efficiency in agricultural lands. Agronomy for Sustainable Development, v.40, p.1-9, 2020. https://doi.org/10.1007/s13593-020-00643-2
FOLEY, J.A.; RAMANKUTTY, N.; BRAUMAN, K.A.; CASSIDY, E.S.; GERBER, J.S.; JOHNSTON, M.; MUELLER, N.D.; O’CONNELL, C.; RAY, D.K.; WEST, P.C.; BALZER, C.; BENNETT, E.M.; CARPENTER, S.R.; HILL, J.; MONFREDA, C.;
POLASKY, S.; ROCKSTRÖM, J.; SHEEHAN, J.; SIEBERT, S.; TILMAN, D.; ZAKS, D.P.M. Solutions for a cultivated planet. Nature, v.478, p.337-342, 2011. https://doi.org/10.1038/nature10452
FOOD AND AGRICULTURE ORGANIZATION. An international consultation on integrated crop-livestock systems for development: The way forward for sustainable production intensification. Integrated Crop Management, v.13. 63p, 2010.
FOOD AND AGRICULTURE ORGANIZATION. The future of food and agriculture– Trends and challenges. Annual Report. 2017.
GABA, S.; LESCOURRET, F.; BOUDSOCQ, S.; ENJALBERT, J.; HINSINGER, P.; JOURNET, E.P.; NAVAS, M.L.; WERY, J.; LOUARN, G.; MALÉZIEUX, E.; PELZER, E.; PRUDENT, M.; OZIER-LAFONTAINE, H. Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design. Agronomy for sustainable development, v.35, p.607-623, 2015. https://doi.org/10.1007/s13593-014-0272-z
GARNETT, T.; APPLEBY, M.C.; BALMFORD, A.; BATEMAN, I.J.; BENTON, T.G.; BLOOMER, P.; BURLINGAME, B.; DAWKINS, M.; DOLAN, L.; FRASER, D.; HERRERO,M.; HOFFMANN, I.; SMITH, P.; THORNTON, P.K.; TOULMIN, C.;
VERMEULEN, S.J.; GODFRAY, H.C.J. Sustainable Intensification in Agriculture: Premises and Policies. Science, v.341, p.33-34. 2013. https://doi.org/10.1126/science.1234485
GILLER, K.E.; ANDERSSON, J.A.; CORBEELS, M.; KIRKEGAARD, J.; MORTENSEN, D.; ERENSTEIN, O.; VANLAUWE, B. Beyond conservation agriculture. Frontiers in plant science, v.870, 2015. https://doi.org/10.3389/fpls.2015.00870
GREGORICH, E.G.; ROCHETTE, P.; VANDENBYGAART, A.J.; ANGERS, D.A. Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil and Tillage Research, v.83, p.53-72, 2005. https://doi.org/10.1016/j.still.2005.02.009
GORDON, I.J.; PRINS, H.H.T.; SQUIRE, G.R. Food production and nature conservation: conflicts and solutions. Taylor & Francis, 2017. 342p.
HOUSE, G.J.; BRUST, G.E. Ecology of low-input, no-tillage agroecosystems. Agriculture, Ecosystems & Environment, v.27, p.331-345, 1989.
HOPKINS, A.; HOLZ, B. Grassland for agriculture and conservation: production, quality and multi-functionality. Agronomy Research, v.4, p.3-20, 2006.
LEMAIRE, G.; FRANZLUEBBERS, A.; CARVALHO, P.C.F.; DIDEU, B. Integrated crop –livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agriculture, Ecosystems and Environment, v.190, p.4–8, 2014. https://doi.org/10.1016/j.agee.2013.08.009
LEMAIRE, G.; GASTAL, F.; FRANZLUEBBERS, A.; CHABBI, A. Grassland–cropping
rotations: an avenue for agricultural diversification to reconcile high production
with environmental quality. Environmental Management, v.56, p.1065–1077, 2015.
https://doi.org/10.1007/s00267-015-0561-6
LÓPEZ-MÁRSICO, L.; ALTESOR, A.; OYARZABAL, M.; BALDASSINI, P.; PARUELO, J.M. Grazing increases below-ground biomass and net primary production in a temperate grassland. Plant and Soil, v.392, p.155–162, 2015. https://doi.org/10.1007/s11104-015-2452-2
MARTINS, A.P.; COSTA, S.E.V.G.A.; ANGHINONI, I.; KUNRATH, T.R.; BALERINI, F.; CECAGNO, D.; CARVALHO, P.C.F. Soil acidification and basic cation use efficiency in an integrated no-till crop–livestock system under different grazing intensities. Agriculture, Ecosystems & Environment, v.195, p.18-28, 2014. https://doi.org/10.1016/j.agee.2014.05.012
MARTINS, A.P.; KUNRATH, T.R.; ANGHINONI, I.; CARVALHO, P.C.F. Integração soja-bovinos de corte no Sul do Brasil: 15 anos de resultados. Porto Alegre: Universidade Federal do Rio Grande do Sul, 2015. 101p.
MARTINS, A.P.; DENARDIN, L.G.O.; BORIN, J.B.M.; CARLOS, F.S.; BARROS, T.; OZÓRIO, D.V.B.; CARMONA, F.C.; ANGHINONI, I.; CAMARGO, F.A.O.; CARVALHO, P.C.F. Short-term impacts on soil-quality assessment in alternative
land uses of traditional paddy fields in Southern Brazil. Land Degradation & Development, v.100, p.1-18, 2017. https://doi.org/10.1002/ldr.2640
MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO - MAPA. Brasil: projeções do agronegócio 2016/2017 a 2026/2027. 2017. http:// www.agricultura.gov.br/assuntos/politica-agricola/todas-publicacoes-depoliticaagricola/projecoes-do-agronegocio/projecoes-do-agronegocio-2017-a-2027-versaopreliminar-25-07-17.pdf/view
MORAES, A.; CARVALHO, P.C.F.; ANGHINONI, I.; LUSTOSA, S.B.C.; COSTA, S.E.V.G.A.; KUNRATH, T.R. Integrated crop-livestock systems in the Brazilian subtropics. European Journal of Agronomy, v.57, p.4–9, 2014. https://
doi.org/10.1016/j.eja.2013.10.004
MORAINE, M.; DURU, M.; NICHOLAS, P.; THEROND, O. Farming system design for innovative crop-livestock integration in Europe. Animal, v.8, p.1204–1217. 2014. https://doi.org/10.1017/S1751731114001189
MORAINE, M.; GRIMALDI, J.; MURGUE, C.; DURU, M.; THEROND, O. Co-design and assessment of cropping systems for developing crop-livestock integration at the territory level. Agricultural Systems, v.147, p.87–97, 2016. https://doi.org/10.1016/j.agsy.2016.06.002
MONTOYA, D.; GABA, S.; MAZANCOURT, C.; BRETAGMOLLE, V.; LOREAU, M. Reconciling biodiversity conservation, food production and farmers’ demand in agricultural landscapes. Ecological modelling, v. 416, p. 108889, 2020. https://doi.org/10.1016/j.ecolmodel.2019.108889
NASCIMENTO, P.C.; BAYER, C.; SILVA NETTO, L.F.; Vian, A.C.; VIEIRO, F.; MACEDO, V.R.M.; MARCOLIN, E. Sistemas de Manejo e a Matéria Orgânica de Solo de Várzea com cultivo de Arroz. Revista Brasileira de Ciência do Solo, v.33, p. 821-1827, 2009. https://doi.org/10.1590/S0100-06832009000600030
NICOLOSO, R.D.S.; LOVATO, T.; AMADO, T.J.C.; BAYER, C., LANZANOVA, M.E. Balanço do carbono orgânico no solo sob integração lavoura-pecuária no sul do Brasil. Revista Brasileira de Ciência do Solo, v. 32, p. 2425-2433, 2008. https://doi.org/10.1590/S0100-06832008000600020
O’REAGAIN, P.J.; SCHWARTS, J. Dietary selection and foraging strategies of animals on rangeland: coping with spatial and temporal variability. In: JOURNET, M. (Ed.). Recent Developments in the Nutrition of Herbivores. 1995. p.419-424.
PERROT, T.; RUSCH, A.; COUX, C.; GABA, S.; BRETAGNOLLE, V. Proportion of Grassland at Landscape Scale Drives Natural Pest Control Services in Agricultural Landscapes. Frontiers in Ecology and Evolution, v.9, p.227, 2021. https://doi.org/10.3389/fevo.2021.607023
PIVA, J. .; DIECKOW, J.; BAYER, C.; ZANATTA, J.A.; MORAES, A.; PAULETTI, V.; TOMAZI, M.; PERGHER, M. No-till reduces global warming potential in a subtropical Ferralsol. Plant and Soil, v. 361, p. 359-373, 2012. https://
doi.org/10.1007/s11104-012-1244-1
REDE ILPF. ILPF em números. Disponível em: <https://www.redeilpf.org.br/index.php/rede-ilpf/ilpf-em-numeros>. Acesso em 28 maio 2021.
REEDER, J.D.; SCHUMAN, G.E. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands. Environmental Pollution, v.116, p.457-63, 2002. https://doi.org/10.1016/S0269-7491(01)00223-8
RYSCHAWY, J.; MARTIN, G.; MORAINE. M.; DURU, M.; THEROND, O. Designing crop–livestock integration at different levels: Toward new agroecological models? Nutrient Cycling in Agroecosystems, v.108, p.5-20, 2017. https://doi.org/10.1007/s10705-016-9815-9
SALTON, J.C.; MIELNICZUK, J.; BAYER, C.; FABRÍCIO, A.C.; MACEDO, M.C. M.; BROCH, D.L. Teor e dinâmica do carbono no solo em sistemas de integração lavoura-pecuária. Pesquisa Agropecuária Brasileira, v.46, p. 349-1356, 2011. https://doi.org/10.1590/S0100-204X2011001000031
SAVIAN, J.V.; BARTH NETO, A; DAVID, D.B.; BREMM, C.; SCHONS, R.M.T.; GENRO, T.C.M.; AMARAL, G.A.; GERE, J.; MCMANUS, C.M.; BAYER, C.; CARVALHO, P.C.F. Grazing intensity and stocking methods on animal production
and methane emission by grazing sheep: Implications for integrated crop–livestock system. Agriculture, Ecosystems and Environment, v.190, p.112-119, 2014. https://doi.org/10.1016/j.agee.2014.02.008
SAVIAN, J.V.; SCHONS, R.M.T.; MARCHI, D.E.; FREITAS, T.S.; DA SILVA NETO, G.F.; MEZZALIRA, J.C.; BERNDT, A.; BAYER, C.; CARVALJO, P.C.F. Rotatinuous stocking: A grazing management innovation that has high potential to mitigate methane emissions by sheep. Journal of cleaner production, v.186, p.602-608, 2018. https://doi.org/10.1016/j.jclepro.2018.03.162
SIX, J.; ELLIOTT, E.T.; PAUSTIAN, K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Science Society of America Journal, v.63, p.1350-1358, 1999. https://doi.org/10.2136/sssaj1999.6351350x
SOUZA, E.D.; COSTA, S.E.V.G.A.; LIMA, C.V.S.; ANGHINONI, I.; MEURER, E.J.; CARVALHO, P.C.F. Carbono orgânico e fósforo microbiano em sistema de integração agricultura-pecuária submetido a diferentes intensidades de pastejo em plantio direto. Revista Brasileira de Ciência do Solo, v.32, p.1273-1282, 2008.
https://doi.org/10.1590/S0100-06832008000300035
SOUZA, E.D., COSTA, S.E.V.G.A., ANGHINONI, I., CARVALHO, P.C.F., OLIVEIRA, E.V.F., MARTINS, A.P., CAO, E.; ANDRIGHETTI, M. Soil aggregation in a croplivestock integration system under no-tillage. Revista Brasileira de Ciência do solo, v.34, p.1365-1374, 2010. https://doi.org/10.1590/S0100-06832010000400033
STINNER, B.R.; HOUSE, G.J. Role of ecology in lower-input, sustainable agriculture: An introduction. American Journal of Alternative Agriculture, v.2, p.146-147, 1987. https://doi.org/10.1017/S0889189300009243
SZYMCZAK, L.S.; CARVALHO, P.C.F.; LURETTE, A.; MORAES, A.; DE ALBUQUERQUE NUNES,. P.A.; MARTINS, A.P.; MOULIN, C.H. System diversification and grazing management as resilience-enhancing agricultural
practices: The case of crop-livestock integration. Agricultural Systems, v.84, p.102904, 2020. https://doi.org/10.1016/j.agsy.2020.102904
TUBIELLO, F.N.; SALVATORE, M.; CÓNDOR GOLEC, R.D.; FERRARA, A.; ROSSI, S.; BIANCALANI, R.; FEDERICI, S.; JACOBS, H.; FLAMMINI, A. Agriculture, forestry and other land use emissions by sources and removals by sinks. Rome, Italy. 2014. 76p.
WORLD HEALTH ORGANIZATION. United Nations Decade of Action on Nutrition (2016-2025). 2017. Disponível em : <https://www.un.org/nutrition/>Acesso em 02 abr 2020
ZUBIETA, A.S., GÓMEZ, A.M., SAVIAN, J.V., SOARES BOLZAN, A.M., ROSSETTO, J., BARRETO, M.T., BINDELLE, J.; BREMM, C.; QUISHPE, L.V.; VELLE, S.F.; DECRUYENAERE, V.; CARVALHO, P.C.F. Low-intensity, high-frequency grazing positively affects defoliating behavior, nutrient intake and blood indicators of nutrition and stress of sheep. Frontiers in Veterinary Science, v.8, p.631820, 2021. https://doi.org/10.3389/fvets.2021.631820
Copyright (c) 2021 Boletim de Indústria Animal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Os autores não serão remunerados pela publicação de trabalhos, pois devem abrir mão de seus direitos autorais em favor deste periódico. Por outro lado, os autores ficam autorizados a publicar seus artigos, simultaneamente, em repositórios da instituição de sua origem, desde que citada a fonte da publicação original seja Boletim de Indústria Animal. A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário. Nesses casos, os artigos, depois de adequados, deverão ser submetidos a nova apreciação. As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade. Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob a Licença Creative Commons Attribution (CC-BY-NC). A condição BY implica que os licenciados podem copiar, distribuir, exibir e executar a obra e fazer trabalhos derivados com base em que só se dão o autor ou licenciante os créditos na forma especificada por estes. A cláusula NC significa que os licenciados podem copiar, distribuir, exibir e executar a obra e fazer trabalhos derivados com base apenas para fins não comerciais.